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Introduction

Traveling Salesman Problem NP-complete

Hard to approximate.

Metric TSP

Edge costs satisfy triangle inequality.
Factor 2 approximation algorithm in O(m + n log n).
Factor 3/2 approximation algorithm in O(n3).

Euclidean TSP

Special case of Metric TSP.
Euclidean distance as cost function.

Objective: Present a PTAS for Euclidean TSP.
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Instance I

1 Consider n points in Rd .

2 The graph is complete.

3 Euclidean distance dist(x, y) =
(∑d

i=1(xi − yi )
2
)1/2

.

4 We consider the case d = 2, i.e. n points in the plane.

Most of it applies to the general case with slight modifications.
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Transform I to I ′

Consider the smallest square
that encloses all n points.

At least two nodes are on
opposite edges of the square.
OPT ≥ 2L.

Set the length of each edge of
the square to L = 4n2.

Just a scale factor, so optimal
tour is invariant

Consider n to be a power of 2,
so L is a power of 2 also, i.e.
L = 2k .

k = 2 + 2 log n = O(log n).

Relocate every node of G to the
nearest gridpoint.
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Solving I ′ is enough

Maximum distance from arbitrary point to the nearest grid
point is

√
2/2.

Absolute error per node is
√

2, i.e. total absolute error n
√

2.

|SOL− OPT |
OPT

≤ n
√

2

2L
=

n
√

2

8n2
=

1

4
√

2n
.

Thus, given a (1 + ε)-solution to I ′, the corresponding
solution to I is (1 + ε + 1

4
√

2n
)-approximate.

For sufficiently large n we can adjust ε to compensate for the
relative error.
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Basic dissection

Partition the square with
two lines into
4-subsquares.

Recursively partition the
resulting squares until
unit squares are obtained.

A level i square has size
L/2i × L/2i .
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Basic dissection

Basic dissection can be seen as a 4-ary tree with depth k.

Number of nodes
1 + 4 + . . . + 4k = O(4k+1) = O(42+2 log n) = O(n4).
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Portals

Restrict the tour to intersect the level lines at certain points
(portals).

Each square has one portal for each corner and m − 1 portals
for each edge, i.e. all in all 4m portals for each square.

Choose m a power of 2 in the interval
[

k
ε , 2k

ε

]
.

Level i portals are also level i + 1 portals.
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Well-behaved tours

1 A tour is well-behaved if it is a tour on the n points and any
subset of the portals.

2 A tour is well-behaved with limited crossings if it is a
well-behaved tour and visits each portal at most twice.

3 Claim: Any well-behaved tour can be transformed to a
well-behaved tour with limited crossings without increasing its
length.

4 Thus, it suffices (??) to search for well-behaved with limited
crossings tours.

No guarantee though that a well-behaved tour is actully close
enough to the optimum. In fact, there are counterexamples
that prove the contrary.
This difficulty will be treated later.
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Making crossings ≤ 2 : Odd number of crossings
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Making crossings ≤ 2 : Even number of crossings
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Eliminating an intersection

We further restrict the tour to not intersect itself apart possibly a
portal.

Triangle inequality guarantees that we haven’t increased the length
of the tour.
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New objectives

We need to:

1 Find an optimal well-behaved tour with limited crossings.

2 Prove that this optimal tour is short enough.

We will use dynamic programming to fulfill the first goal.
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Dynamic Programming

We look only for tours with limited crossings, i.e. each portal
can be used 0, 1 or 2 times.

4m portals in total for each square, thus
34m = 24m log 3 = 24k log 3/ε = nO(1/ε) possibilities for each
square.

Once we have selected the portals, not every possible pairing
is allowed because no self-intersection is allowed.
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Valid pairings
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Valid pairings
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Counting valid pairings

There is a bijection between valid pairings with 2r portals and
balanced arrangement of 2r parentheses.

(())()

The latter is the r -th Catalan number, Cr = 1
r+1

(2r
r

)
< 22r .

Each visit on the portals of a square uses at most 8m portals,
thus the number of valid pairings is at most

28m = 28k/ε = nO(1/ε).
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Putting it together

nO(1/ε) possibilities of portal usage.

nO(1/ε) valid pairings for each portal usage.

Total number of valid visits : nO(1/ε) · nO(1/ε) = nO(1/ε).

Andreas Galanis Arora’s PTAS for Euclidean TSP



Basics
DP

Bypassing losses

Valid Visits
The algorithm

Dynamic Programming

minimum level 0 level 1 . . .
costs square 1 square 1 square 2 square 3 square 4 . . .

valid visit 1

valid visit 2

valid visit 3
...

#columns = #nodes in 4-ary tree = O(n4).

#rows = #valid visits = nO(1/ε).

#entries = nO(1/ε) · nO(1/ε) = nO(1/ε).
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Dynamic Programming

minimum level 0 level 1 . . .
costs square 1 square 1 square 2 square 3 square 4 . . .

valid visit 1

valid visit 2

valid visit 3
...

1 Start at the leaves of the tree.

2 Use the results of the four children squares to compute the
visits of the corresponding parent square.
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Dynamic Programming - Cost per entry

4m + 1 internal portals, thus 34m+1 = nO(1/ε) possible portal
usage.

Using again Catalan numbers, we obtain at most
28m+2 = nO(1/ε) valid pairings.

In total, we have nO(1/ε) configurations to consider.
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Dynamic Programming - Cost per entry

minimum level 0 level 1 . . .
costs square 1 square 1 square 2 square 3 square 4 . . .

valid visit 1

valid visit 2

valid visit 3
...

1 Sum the corresponding lengths of the appropriate visits of the
children squares and find the minimum.

2 Total cost = #entries ·nO(1/ε) = nO(1/ε) · nO(1/ε) = nO(1/ε).
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Losses

We have computed the optimal well-behaved tour. Is it short
enough?

NO!

Andreas Galanis Arora’s PTAS for Euclidean TSP



Basics
DP

Bypassing losses

Counterexample
Randomize!
Losses Revisited

Why not?
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Counterexample

1 OPT =
√

32+42

4 L + 2y + L.

2 SOL =
√

2+
√

22+32

4 L + 2y + L.

3 OPT
SOL > 1.0015.
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Shifted dissection

Choose randomly integers a, b such that 0 ≤ a, b < L and shift
each vertical line x to x + a mod L and each horizontal line y to
y + b mod L.

This way any specific line has random level.
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Shifted dissection

1 21 level 1 lines, 22 level 2 lines, . . . , 2k level k lines.
2 #lines=2k+1 − 1.
3 Probability that a randomly chosen line has level i is

p(i) =
2i

2k+1 − 1
=

2i

2L− 2
≤ 2i

L
.
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Expected value of indirection

1 Maximum indirection when a level i line is crossed is

x(i) =
L

2im

2 Expected value of indirection when a random line is crossed is

E (X ) =
k∑

i=1

p(i)x(i) ≤
k∑

i=1

2i

L
· L

2im
=

k

m
≤ ε
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Expected value of total indirection

1 In order to find the expected value of total indirection we need
to bound the number of crossings.

2 Let τ an optimal tour and let N(τ) the total number of
crossings (both vertical and horizontal). Then

N(τ) ≤
√

2 · OPT

3 If Y is the total indirection

E (Y ) = N(τ) · E (X ) ≤
√

2 · OPT · ε

4 Markov inequality implies

Pr[Y ≥ 2
√

2ε · OPT ] ≤ E (Y )

2
√

2ε · OPT
≤ 1

2
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Error Bound

1 From the preceding, the probability that the error bound
exceeds 2

√
2ε is less than 1/2. The 2

√
2 constant can be

tackled with a suitably chosen ε′ (2
√

2ε′ = ε).

2 The algorithm can be derandomized by checking all the
O(L2) = O(n4) possibilities for a, b.
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Proving N(τ) ≤
√

2 · OPT

Number of crossings
equals the perimeter of
the square (red line).

c2 = a2 + b2.

a2 + b2 ≥ (a + b)2/2.

c
√

2 ≥ (a + b).

Adding up we obtain the
desired result.
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